Discrete developmental roles for temperate cereal grass VERNALIZATION1/FRUITFULL-like genes in flowering competency and the transition to flowering.

نویسندگان

  • Jill C Preston
  • Elizabeth A Kellogg
چکیده

Members of the grass subfamily Pooideae are characterized by their adaptation to cool temperate climates. Vernalization is the process whereby flowering is accelerated in response to a prolonged period of cold. Winter cereals are tolerant of low temperatures and flower earlier with vernalization, whereas spring cultivars are intolerant of low temperatures and flower later with vernalization. In the pooid grasses wheat (Triticum monococcum, Triticum aestivum) and barley (Hordeum vulgare), vernalization responsiveness is determined by allelic variation at the VERNALIZATION1 (VRN1) and/or VRN2 loci. To determine whether VRN1, and its paralog FRUITFULL2 (FUL2), are involved in vernalization requirement across Pooideae, we determined expression profiles for multiple cultivars of oat (Avena sativa) and wheat with and without cold treatment. Our results demonstrate significant up-regulation of VRN1 expression in leaves of winter oat and wheat in response to vernalization; no treatment effect was found for spring or facultative growth habit oat and wheat. Similar cold-dependent patterns of leaf expression were found for FUL2 in winter oat, but not winter wheat, suggesting a redundant qualitative role for these genes in the quantitative induction of flowering competency of oat. These and other data support the hypothesis that VRN1 is a common regulator of vernalization responsiveness within the crown pooids. Finally, we found that up-regulation of VRN1 in vegetative meristems of oat was significantly later than in leaves. This suggests distinct and conserved roles for temperate cereal grass VRN1/FUL-like genes, first, in systemic signaling to induce flowering competency, and second, in meristems to activate genes involved in the floral transition.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Direct links between the vernalization response and other key traits of cereal crops.

Transcription of the vernalization1 gene (VRN1) is induced by prolonged cold (vernalization) to trigger flowering of cereal crops, such as wheat and barley. VRN1 encodes a MADS box transcription factor that promotes flowering by regulating the expression of other genes. Here we use transcriptome sequencing (RNA-seq) and chromatin immunoprecipitation sequencing (ChIP-seq) to identify direct targ...

متن کامل

The molecular biology of seasonal flowering-responses in Arabidopsis and the cereals.

BACKGROUND In arabidopsis (Arabidopsis thaliana), FLOWERING LOCUS T (FT) and FLOWERING LOCUS C (FLC) play key roles in regulating seasonal flowering-responses to synchronize flowering with optimal conditions. FT is a promoter of flowering activated by long days and by warm conditions. FLC represses FT to delay flowering until plants experience winter. SCOPE The identification of genes control...

متن کامل

Three Medicago MtFUL genes have distinct and overlapping expression patterns during vegetative and reproductive development and 35S:MtFULb accelerates flowering and causes a terminal flower phenotype in Arabidopsis

The timing of the transition to flowering is carefully controlled by plants in order to optimize sexual reproduction and the ensuing production of seeds, grains, and fruits. The genetic networks that regulate floral induction are best characterized in the temperate eudicot Arabidopsis in which the florigen gene FT plays a major role in promoting the transition to flowering. Legumes are an impor...

متن کامل

ODDSOC2 is a MADS box floral repressor that is down-regulated by vernalization in temperate cereals.

In temperate cereals, such as wheat (Triticum aestivum) and barley (Hordeum vulgare), the transition to reproductive development can be accelerated by prolonged exposure to cold (vernalization). We examined the role of the grass-specific MADS box gene ODDSOC2 (OS2) in the vernalization response in cereals. The barley OS2 gene (HvOS2) is expressed in leaves and shoot apices but is repressed by v...

متن کامل

The flowering integrator FT regulates SEPALLATA3 and FRUITFULL accumulation in Arabidopsis leaves.

The transition to flowering involves major changes in the shoot apical meristem and in the fate of existing leaf primordia. Transcripts of the Arabidopsis thaliana flowering-promoting gene FLOWERING LOCUS T (FT) are present in leaf tissue but can also promote flowering when artificially introduced into the meristem. FT may normally act in the leaf and/or the meristem, initiating or constituting...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Plant physiology

دوره 146 1  شماره 

صفحات  -

تاریخ انتشار 2008